Natural Sciences

Study at the top* physics department in the UK

Cambridge’s Department of Physics, the Cavendish Laboratory, produces world-class research in a broad range of fields and teaches an advanced degree programme, including both 3-year (BA) and 4-year (MSci) options. Each year around 130 students graduate in Physics, making it one of the largest Natural Sciences disciplines. Nearly half of these graduates go on to higher research degrees, joining PhD programmes in the UK and worldwide; the other half pursue a wide range of careers including education, business, and finance.

<table>
<thead>
<tr>
<th>Rank</th>
<th>University Name</th>
<th>Entry Standards</th>
<th>Student Satisfaction</th>
<th>Research Quality</th>
<th>Graduate Prospects</th>
<th>Overall Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Cambridge</td>
<td>626</td>
<td>4.20</td>
<td>3.29</td>
<td>87</td>
<td>100.0</td>
</tr>
<tr>
<td>2nd</td>
<td>St Andrews</td>
<td>552</td>
<td>4.61</td>
<td>3.33</td>
<td>82</td>
<td>98.6</td>
</tr>
<tr>
<td>3rd</td>
<td>Oxford</td>
<td>608</td>
<td>3.98</td>
<td>3.34</td>
<td>87</td>
<td>98.5</td>
</tr>
</tbody>
</table>

* 2017 Data: https://www.thecompleteuniversityguide.co.uk/league-tables/rankings?subject=Physics+%26+Astronomy

FAQs

1. What is the relationship between departments and colleges?
The department determines the content of the course and provides lectures, practicals, and examinations. The colleges carry out admissions and provide accommodation, the day-to-day living environment for students, and small group subject-specific teaching (called supervision at Cambridge).

http://www.cam.ac.uk/admissions/undergraduate/colleges/

2. How do I choose my college? Do only some colleges take physics students?
Students can study Natural Sciences (Physics) at all colleges. The college that you choose will be your home for three or four years; therefore the most important consideration is whether you will find it a comfortable and appropriate environment.

http://www.cam.ac.uk/admissions/undergraduate/colleges/choosing.html

3. What subjects and grades will I need to get a place?
Useful: A level/Advanced Highers/Higher Level IB Further Mathematics, Chemistry.

http://www.cam.ac.uk/admissions/undergraduate/courses/natsci/requirements.html

4. What about the admissions test?
The admissions test is taken at your school or exam centre and used as part of the college admissions process. It has two sections: Section 1: Maths and Science MCQs (80 minutes), and Section 2: Science-specific longer questions (40 minutes).

5. Will the Cambridge Natural Sciences Degree contain enough physics?
The 4-year Master’s Degree in Physics takes students to the frontiers of physics knowledge, and prepares students for research and many other exciting careers. The great strength of the Natural Sciences course is that it allows students to experience degree-level science in the first two years before choosing their preferred specialisation. In addition, because much modern research is interdisciplinary, the broad nature of Natural Sciences teaching helps to provide a strong foundation for research.

6. Is it more expensive to study at Cambridge?
Tuition fees at Cambridge are the same as almost every other university in the country and we also have one of the most extensive bursary schemes.

http://www.cam.ac.uk/admissions/undergraduate/finance/

7. How much work is it?
In the first year there will be approximately 25 hours of timetabled work in each of the 8 weeks of full term; this includes: lectures, practicals, and supervisions. In addition, you will be expected to do around 20 hours of personal study each week.
Research at the Cavendish:

Alongside teaching the undergraduate courses, the academic staff of the Cavendish are actively engaged in a broad spectrum of physics research. The Cavendish is the largest physics department in the UK and our current research groups include: Astrophysics; Atomic, Mesoscopic & Optical Physics; Biological & Soft Systems; Quantum Sensors; High Energy Physics; Inference; Microelectronics; Nanophotonics; Optoelectronics; Quantum Matter; Surfaces, Microstructure & Fracture; Semiconductor Physics; Theoretical Condensed Matter Physics; and Thin Film Magnetism.